Source code for terrainbento.derived_models.model_basicCv

# coding: utf8
# !/usr/env/python
"""terrainbento **BasicCv** model program.

Erosion model program using linear diffusion, stream power, and discharge
proportional to drainage area with climate change.

Landlab components used:
    1. `FlowAccumulator <https://landlab.readthedocs.io/en/master/reference/components/flow_accum.html>`_
    2. `DepressionFinderAndRouter <https://landlab.readthedocs.io/en/master/reference/components/flow_routing.html>`_ (optional)
    3. `FastscapeEroder <https://landlab.readthedocs.io/en/master/reference/components/stream_power.html>`_
    4. `LinearDiffuser <https://landlab.readthedocs.io/en/master/reference/components/diffusion.html>`_
"""

from scipy.interpolate import interp1d

from landlab.components import FastscapeEroder, LinearDiffuser
from terrainbento.base_class import ErosionModel


[docs]class BasicCv(ErosionModel): r"""**BasicCv** model program. This model program evolves a topographic surface, :math:`\eta`, with the following governing equation: .. math:: \frac{\partial \eta}{\partial t} = -KQ^{m}S^{n} + D\nabla^2 \eta where :math:`K` is the fluviel erodibility coefficient, :math:`Q` is the local stream discharge, :math:`S` is the local slope, :math:`m` and :math:`n` are the discharge and slope exponent parameters, and :math:`D` is the regolith transport parameter. This model also has a basic parameterization of climate change such that :math:`K` varies through time. Between model run onset and a time at which the climate becomes constant, the value of :math:`K` linearly changes from :math:`fK` to :math:`K`, at which point it remains at :math:`K` for the remainder of the modeling time period. Refer to `Barnhart et al. (2019) <https://doi.org/10.5194/gmd-12-1267-2019>`_ Table 5 for full list of parameter symbols, names, and dimensions. The following at-node fields must be specified in the grid: - ``topographic__elevation`` """ _required_fields = ["topographic__elevation"]
[docs] def __init__( self, clock, grid, m_sp=0.5, n_sp=1.0, water_erodibility=0.0001, regolith_transport_parameter=0.1, climate_factor=0.5, climate_constant_date=0.0, **kwargs ): """ Parameters ---------- clock : terrainbento Clock instance grid : landlab model grid instance The grid must have all required fields. m_sp : float, optional Drainage area exponent (:math:`m`). Default is 0.5. n_sp : float, optional Slope exponent (:math:`n`). Default is 1.0. water_erodibility : float, optional Water erodibility (:math:`K`). Default is 0.0001. regolith_transport_parameter : float, optional Regolith transport efficiency (:math:`D`). Default is 0.1. climate_factor : float, optional. Default is 0.5.(:math:`f` ) climate_constant_date : float, optional. Model time at which climate becomes constant (:math:`T_s`) and water erodibility stabilizes at a value of :math:`K`. Default is 0.0. **kwargs : Keyword arguments to pass to :py:class:`ErosionModel`. Importantly these arguments specify the precipitator and the runoff generator that control the generation of surface water discharge (:math:`Q`). Returns ------- Basic : model object Examples -------- This is a minimal example to demonstrate how to construct an instance of model ``Basic``. For more detailed examples, including steady-state test examples, see the terrainbento tutorials. To begin, import the model class. >>> from landlab import RasterModelGrid >>> from landlab.values import random >>> from terrainbento import Clock, BasicCv >>> clock = Clock(start=0, stop=100, step=1) >>> grid = RasterModelGrid((5,5)) >>> _ = random(grid, "topographic__elevation") Construct the model. >>> model = BasicCv(clock, grid) Running the model with ``model.run()`` would create output, so here we will just run it one step. >>> model.run_one_step(1.) >>> model.model_time 1.0 """ # Call ErosionModel"s init super().__init__(clock, grid, **kwargs) # verify correct fields are present. self._verify_fields(self._required_fields) self.m = m_sp self.n = n_sp self.climate_factor = climate_factor self.climate_constant_date = climate_constant_date time = [ 0, self.climate_constant_date, self.clock.stop + self.clock.step, ] K = [ water_erodibility * self.climate_factor, water_erodibility, water_erodibility, ] self.K_through_time = interp1d(time, K) # Instantiate a FastscapeEroder component self.eroder = FastscapeEroder( self.grid, K_sp=K[0], m_sp=self.m, n_sp=self.n, discharge_field="surface_water__discharge", erode_flooded_nodes=self._erode_flooded_nodes, ) # Instantiate a LinearDiffuser component self.diffuser = LinearDiffuser( self.grid, linear_diffusivity=regolith_transport_parameter )
[docs] def run_one_step(self, step): """Advance model ``Basic`` for one time-step of duration step. The **run_one_step** method does the following: 1. Creates rain and runoff, then directs and accumulates flow. 2. Assesses the location, if any, of flooded nodes where erosion should not occur. 3. Updates detachment-limited erosion based on climate. 4. Calculates detachment-limited erosion by water. 5. Calculates topographic change by linear diffusion. 6. Finalizes the step using the :py:mod:`ErosionModel` base class function **finalize__run_one_step**. This function updates all boundary handlers handlers by ``step`` and increments model time by ``step``. Parameters ---------- step : float Increment of time for which the model is run. """ # create and move water self.create_and_move_water(step) # Update erosion based on climate self.eroder.K = float(self.K_through_time(self.model_time)) # Do some erosion (but not on the flooded nodes) self.eroder.run_one_step(step) # Do some soil creep self.diffuser.run_one_step(step) # Finalize the run_one_step_method self.finalize__run_one_step(step)
[docs]def main(): # pragma: no cover """Executes model.""" import sys try: infile = sys.argv[1] except IndexError: print("Must include input file name on command line") sys.exit(1) ldsp = BasicCv.from_file(infile) ldsp.run()
if __name__ == "__main__": main()