Source code for terrainbento.derived_models.model_basicHyRt

# coding: utf8
# !/usr/env/python
"""terrainbento **BasicHyRt** model program.

Erosion model program using linear diffusion, stream-power-driven sediment
erosion and mass conservation with spatially varying erodibility based on two
bedrock units, and discharge proportional to drainage area.

Landlab components used:
    1. `FlowAccumulator <https://landlab.readthedocs.io/en/master/reference/components/flow_accum.html>`_
    2. `DepressionFinderAndRouter <https://landlab.readthedocs.io/en/master/reference/components/flow_routing.html>`_ (optional)
    3. `ErosionDeposition <https://landlab.readthedocs.io/en/master/reference/components/erosion_deposition.html>`_
    4. `LinearDiffuser <https://landlab.readthedocs.io/en/master/reference/components/diffusion.html>`_
"""


from landlab.components import ErosionDeposition, LinearDiffuser
from terrainbento.base_class import TwoLithologyErosionModel


[docs]class BasicHyRt(TwoLithologyErosionModel): r"""**BasicHyRt** model program. This model program combines the :py:class:`BasicRt` and :py:class:`BasicHy` programs by allowing for two lithologies, an "upper" layer and a "lower" layer, stream-power-driven sediment erosion and mass conservation. Given a spatially varying contact zone elevation, :math:`\eta_C(x,y))`, model **BasicHyRt** evolves a topographic surface described by :math:`\eta` with the following governing equations: .. math:: \frac{\partial \eta}{\partial t} = \frac{V Q_s}{Q} - K Q^{m}S^{n} + D\nabla^2 \eta Q_s = \int_0^A \left((1-F_f)KQ(A)^{m}S^{n} - \frac{V Q_s}{Q(A)} \right) dA K(\eta, \eta_C ) = w K_1 + (1 - w) K_2 w = \frac{1}{1+\exp \left( -\frac{(\eta -\eta_C )}{W_c}\right)} where :math:`Q` is the local stream discharge, :math:`A` is the local upstream drainage area, :math:`S` is the local slope, :math:`m` and :math:`n` are the discharge and slope exponen parameters, :math:`W_c` is the contact-zone width, :math:`K_1` and :math:`K_2` are the erodabilities of the upper and lower lithologies, and :math:`D` is the regolith transport parameter. :math:`Q_s` is the volumetric sediment discharge, and :math:`V` is the effective settling velocity of the sediment. :math:`w` is a weight used to calculate the effective erodibility :math:`K(\eta, \eta_C)` based on the depth to the contact zone and the width of the contact zone. The weight :math:`w` promotes smoothness in the solution of erodibility at a given point. When the surface elevation is at the contact elevation, the erodibility is the average of :math:`K_1` and :math:`K_2`; above and below the contact, the erodibility approaches the value of :math:`K_1` and :math:`K_2` at a rate related to the contact zone width. Thus, to make a very sharp transition, use a small value for the contact zone width. Refer to `Barnhart et al. (2019) <https://doi.org/10.5194/gmd-12-1267-2019>`_ Table 5 for full list of parameter symbols, names, and dimensions. The following at-node fields must be specified in the grid: - ``topographic__elevation`` - ``lithology_contact__elevation`` """ _required_fields = [ "topographic__elevation", "lithology_contact__elevation", ]
[docs] def __init__( self, clock, grid, solver="basic", settling_velocity=0.001, fraction_fines=0.5, **kwargs ): """ Parameters ---------- clock : terrainbento Clock instance grid : landlab model grid instance The grid must have all required fields. m_sp : float, optional Drainage area exponent (:math:`m`). Default is 0.5. n_sp : float, optional Slope exponent (:math:`n`). Default is 1.0. water_erodibility_upper : float, optional Water erodibility of the upper layer (:math:`K_{1}`). Default is 0.001. water_erodibility_lower : float, optional Water erodibility of the upper layer (:math:`K_{2}`). Default is 0.0001. contact_zone__width : float, optional Thickness of the contact zone (:math:`W_c`). Default is 1. regolith_transport_parameter : float, optional Regolith transport efficiency (:math:`D`). Default is 0.1. settling_velocity : float, optional Settling velocity of entrained sediment (:math:`V`). Default is 0.001. fraction_fines : float, optional Fraction of fine sediment that is permanently detached (:math:`F_f`). Default is 0.5. solver : str, optional Solver option to pass to the Landlab `ErosionDeposition <https://landlab.readthedocs.io/en/master/reference/components/erosion_deposition.html>`__ component. Default is "basic". **kwargs : Keyword arguments to pass to :py:class:`TwoLithologyErosionModel`. Importantly these arguments specify the precipitator and the runoff generator that control the generation of surface water discharge (:math:`Q`). Returns ------- BasicHyRt : model object Examples -------- This is a minimal example to demonstrate how to construct an instance of model **BasicHyRt**. For more detailed examples, including steady-state test examples, see the terrainbento tutorials. To begin, import the model class. >>> from landlab import RasterModelGrid >>> from landlab.values import random, constant >>> from terrainbento import Clock, BasicHyRt >>> clock = Clock(start=0, stop=100, step=1) >>> grid = RasterModelGrid((5,5)) >>> _ = random(grid, "topographic__elevation") >>> _ = constant(grid, "lithology_contact__elevation", value=-10.) Construct the model. >>> model = BasicHyRt(clock, grid) Running the model with ``model.run()`` would create output, so here we will just run it one step. >>> model.run_one_step(1.) >>> model.model_time 1.0 """ # If needed, issue warning on porosity if "sediment_porosity" in kwargs: msg = "sediment_porosity is no longer used by BasicHyRt." raise ValueError(msg) # Call ErosionModel"s init super().__init__(clock, grid, **kwargs) # verify correct fields are present. self._verify_fields(self._required_fields) # Save the threshold values for rock and till self.rock_thresh = 0.0 self.till_thresh = 0.0 # Set up rock-till boundary and associated grid fields. self._setup_rock_and_till_with_threshold() # Instantiate an ErosionDeposition ("hybrid") component self.eroder = ErosionDeposition( self.grid, K="substrate__erodibility", F_f=fraction_fines, v_s=settling_velocity, m_sp=self.m, n_sp=self.n, discharge_field="surface_water__discharge", solver=solver, ) # Instantiate a LinearDiffuser component self.diffuser = LinearDiffuser( self.grid, linear_diffusivity=self.regolith_transport_parameter )
[docs] def run_one_step(self, step): """Advance model **BasicHyRt** for one time-step of duration step. The **run_one_step** method does the following: 1. Creates rain and runoff, then directs and accumulates flow. 2. Assesses the location, if any, of flooded nodes where erosion should not occur. 3. Assesses if a :py:mod:`PrecipChanger` is an active boundary handler and if so, uses it to modify the erodibility by water. 4. Updates the spatially variable erodibility value based on the relative distance between the topographic surface and the lithology contact. 5. Calculates detachment-limited erosion by water. 6. Calculates topographic change by linear diffusion. 7. Finalizes the step using the :py:mod:`ErosionModel` base class function **finalize__run_one_step**. This function updates all boundary handlers handlers by ``step`` and increments model time by ``step``. Parameters ---------- step : float Increment of time for which the model is run. """ # create and move water self.create_and_move_water(step) # Update the erodibility and threshold field self._update_erodibility_and_threshold_fields() # Do some erosion (but not on the flooded nodes) self.eroder.run_one_step(step) # Do some soil creep self.diffuser.run_one_step(step) # Finalize the run_one_step_method self.finalize__run_one_step(step)
[docs]def main(): # pragma: no cover """Executes model.""" import sys try: infile = sys.argv[1] except IndexError: print("Must include input file name on command line") sys.exit(1) thrt = BasicHyRt.from_file(infile) thrt.run()
if __name__ == "__main__": main()