Source code for terrainbento.derived_models.model_basicHySa

# coding: utf8
# !/usr/env/python
"""terrainbento model **BasicHySa** program.

Erosion model program using exponential weathering, soil-depth-dependent linear
diffusion, stream-power-driven sediment erosion, mass conservation, and bedrock
erosion, and discharge proportional to drainage area.

Landlab components used:
    1. `FlowAccumulator <https://landlab.readthedocs.io/en/master/reference/components/flow_accum.html>`_
    2. `DepressionFinderAndRouter <https://landlab.readthedocs.io/en/master/reference/components/flow_routing.html>`_ (optional)
    3. `Space <https://landlab.readthedocs.io/en/master/reference/components/space.html>`_
    4. `DepthDependentDiffuser <https://landlab.readthedocs.io/en/master/reference/components/depth_dependent_diffusion.html>`_
    5. `ExponentialWeatherer <https://landlab.readthedocs.io/en/master/reference/components/weathering.html>`_
"""

import numpy as np

from landlab.components import (
    DepthDependentDiffuser,
    ExponentialWeatherer,
    Space,
)
from terrainbento.base_class import ErosionModel


[docs]class BasicHySa(ErosionModel): r"""**BasicHySa** program. This model program combines :py:class:`BasicHy` and :py:class:`BasicSa` to evolve a topographic surface described by :math:`\eta` with the following governing equation: .. math:: \eta = \eta_b + H \frac{\partial H}{\partial t} = P_0 \exp (-H/H_s) + \frac{V_s Q_s}{Q(A)\left(1 - \phi \right)} - K_s Q(A)^{m}S^{n} (1 - e^{-H/H_*}) -\nabla q_h \frac{\partial \eta_b}{\partial t} = -P_0 \exp (-H/H_s) - K_r Q(A)^{m}S^{n} e^{-H/H_*} Q_s = \int_0^A \left(K_s Q(A)^{m}S^{n} (1-e^{-H/H_*}) + K_r (1-F_f) Q(A)^{m}S^{n} e^{-H/H_*} - \frac{V_s Q_s}{Q(A)}\right) dA where :math:`\eta_b` is the bedrock elevation, :math:`H` is the soil depth, :math:`P_0` is the maximum soil production rate, :math:`H_s` is the soil production decay depth, :math:`V_s` is effective sediment settling velocity, :math:`Q_s` is volumetric fluvial sediment flux, :math:`A` is the local drainage area, :math:`Q`, is the local discharge, :math:`S` is the local slope, :math:`\phi` is sediment porosity, :math:`F_f` is the fraction of fine sediment, :math:`K_r` and :math:`K_s` are rock and sediment erodibility respectively, :math:`m` and :math:`n` are the discharge and slope exponent parameters, :math:`H_*` is the bedrock roughness length scale, and :math:`r` is a runoff rate. Hillslope sediment flux per unit width :math:`q_h` is given by: .. math:: q_h = -D H^* \left[1-\exp \left( -\frac{H}{H_0} \right) \right] \nabla \eta. where :math:`D` is soil diffusivity and :math:`H_0` is the soil transport depth scale. Refer to `Barnhart et al. (2019) <https://doi.org/10.5194/gmd-12-1267-2019>`_ Table 5 for full list of parameter symbols, names, and dimensions. The following at-node fields must be specified in the grid: - ``topographic__elevation`` - ``soil__depth`` """ _required_fields = ["topographic__elevation", "soil__depth"]
[docs] def __init__( self, clock, grid, m_sp=0.5, n_sp=1.0, water_erodibility_sediment=0.001, water_erodibility_rock=0.0001, regolith_transport_parameter=0.1, settling_velocity=0.001, sediment_porosity=0.3, fraction_fines=0.5, roughness__length_scale=0.5, solver="basic", soil_production__maximum_rate=0.001, soil_production__decay_depth=0.5, soil_transport_decay_depth=0.5, sp_crit_br=0, sp_crit_sed=0, **kwargs ): """ Parameters ---------- clock : terrainbento Clock instance grid : landlab model grid instance The grid must have all required fields. m_sp : float, optional Drainage area exponent (:math:`m`). Default is 0.5. n_sp : float, optional Slope exponent (:math:`n`). Default is 1.0. water_erodibility : float, optional Water erodibility (:math:`K`). Default is 0.0001. regolith_transport_parameter : float, optional Regolith transport efficiency (:math:`D`). Default is 0.1. settling_velocity : float, optional Normalized settling velocity of entrained sediment (:math:`V_s`). Default is 0.001. sediment_porosity : float, optional Sediment porosity (:math:`\phi`). Default is 0.3. fraction_fines : float, optional Fraction of fine sediment that is permanently detached (:math:`F_f`). Default is 0.5. roughness__length_scale : float, optional Bedrock roughness length scale. Default is 0.5. solver : str, optional Solver option to pass to the Landlab `Space <https://landlab.readthedocs.io/en/master/reference/components/space.html>`_ component. Default is "basic". soil_production__maximum_rate : float, optional Maximum rate of soil production (:math:`P_{0}`). Default is 0.001. soil_production__decay_depth : float, optional Decay depth for soil production (:math:`H_{s}`). Default is 0.5. soil_transport_decay_depth : float, optional Decay depth for soil transport (:math:`H_{0}`). Default is 0.5. **kwargs : Keyword arguments to pass to :py:class:`ErosionModel`. Importantly these arguments specify the precipitator and the runoff generator that control the generation of surface water discharge (:math:`Q`). Returns ------- BasicHySa : model object Examples -------- This is a minimal example to demonstrate how to construct an instance of model **BasicHySa**. For more detailed examples, including steady-state test examples, see the terrainbento tutorials. To begin, import the model class. >>> from landlab import RasterModelGrid >>> from landlab.values import random >>> from terrainbento import Clock, BasicHySa >>> clock = Clock(start=0, stop=100, step=1) >>> grid = RasterModelGrid((5,5)) >>> _ = random(grid, "topographic__elevation") >>> _ = random(grid, "soil__depth") Construct the model. >>> model = BasicHySa(clock, grid) Running the model with ``model.run()`` would create output, so here we will just run it one step. >>> model.run_one_step(1.) >>> model.model_time 1.0 """ # Call ErosionModel"s init super().__init__(clock, grid, **kwargs) # verify correct fields are present. self._verify_fields(self._required_fields) soil_thickness = self.grid.at_node["soil__depth"] bedrock_elev = self.grid.add_zeros("node", "bedrock__elevation") bedrock_elev[:] = self.z - soil_thickness self.m = m_sp self.n = n_sp self.K_br = water_erodibility_rock self.K_sed = water_erodibility_sediment # Instantiate a SPACE component self.eroder = Space( self.grid, K_sed=self.K_sed, K_br=self.K_br, sp_crit_br=sp_crit_br, sp_crit_sed=sp_crit_sed, F_f=fraction_fines, phi=sediment_porosity, H_star=roughness__length_scale, v_s=settling_velocity, m_sp=self.m, n_sp=self.n, discharge_field="surface_water__discharge", solver=solver, ) # Instantiate diffusion and weathering components self.weatherer = ExponentialWeatherer( self.grid, soil_production__maximum_rate=soil_production__maximum_rate, soil_production__decay_depth=soil_production__decay_depth, ) self.diffuser = DepthDependentDiffuser( self.grid, linear_diffusivity=regolith_transport_parameter, soil_transport_decay_depth=soil_transport_decay_depth, ) self.grid.at_node["soil__depth"][:] = ( self.grid.at_node["topographic__elevation"] - self.grid.at_node["bedrock__elevation"] )
[docs] def run_one_step(self, step): """Advance model **BasicHySa** for one time-step of duration step. The **run_one_step** method does the following: 1. Creates rain and runoff, then directs and accumulates flow. 2. Assesses the location, if any, of flooded nodes where erosion should not occur. 3. Assesses if a :py:mod:`PrecipChanger` is an active boundary handler and if so, uses it to modify the erodibility by water. 4. Calculates erosion and deposition by water. 5. Calculates topographic change by linear diffusion. 6. Finalizes the step using the :py:mod:`ErosionModel` base class function **finalize__run_one_step**. This function updates all boundary handlers handlers by ``step`` and increments model time by ``step``. Parameters ---------- step : float Increment of time for which the model is run. """ # create and move water self.create_and_move_water(step) # Do some erosion (but not on the flooded nodes) # (if we're varying K through time, update that first) if "PrecipChanger" in self.boundary_handlers: erode_factor = self.boundary_handlers[ "PrecipChanger" ].get_erodibility_adjustment_factor() self.eroder.K_sed = self.K_sed * erode_factor self.eroder.K_br = self.K_br * erode_factor self.eroder.run_one_step(step) # We must also now erode the bedrock where relevant. If water erosion # into bedrock has occurred, the bedrock elevation will be higher than # the actual elevation, so we simply re-set bedrock elevation to the # lower of itself or the current elevation. b = self.grid.at_node["bedrock__elevation"] b[:] = np.minimum(b, self.grid.at_node["topographic__elevation"]) # Calculate regolith-production rate self.weatherer.calc_soil_prod_rate() # Generate and move soil around self.diffuser.run_one_step(step) # Finalize the run_one_step_method self.finalize__run_one_step(step) # Check stability self.check_stability()
[docs] def check_stability(self): """Check model stability and exit if unstable.""" fields = self.grid.at_node.keys() for f in fields: if np.any(np.isnan(self.grid.at_node[f])) or np.any( np.isinf(self.grid.at_node[f]) ): raise SystemExit( "terrainbento ModelHySa: Model became unstable" )
[docs]def main(): # pragma: no cover """Executes model.""" import sys try: infile = sys.argv[1] except IndexError: print("Must include input file name on command line") sys.exit(1) hysa = BasicHySa.from_file(infile) hysa.run()
if __name__ == "__main__": main()