Source code for terrainbento.derived_models.model_basicHySt

# coding: utf8
# !/usr/env/python
"""terrainbento Model **BasicHySt** program.

Erosion model program using linear diffusion for gravitational mass transport,
and an entrainment-deposition law for water erosion and deposition. Discharge
is calculated from drainage area, infiltration capacity (a parameter), and
precipitation rate, which is a stochastic variable.

Landlab components used:
    1. `FlowAccumulator <https://landlab.readthedocs.io/en/master/reference/components/flow_accum.html>`_
    2. `DepressionFinderAndRouter <https://landlab.readthedocs.io/en/master/reference/components/flow_routing.html>`_ (optional)
    3. `ErosionDeposition <https://landlab.readthedocs.io/en/master/reference/components/erosion_deposition.html>`_
    4. `LinearDiffuser <https://landlab.readthedocs.io/en/master/reference/components/diffusion.html>`_
    5. `PrecipitationDistribution <https://landlab.readthedocs.io/en/master/reference/components/uniform_precip.html>`_
"""

from landlab.components import ErosionDeposition, LinearDiffuser
from terrainbento.base_class import StochasticErosionModel


[docs]class BasicHySt(StochasticErosionModel): r"""**BasicHySt** model program. This model program that uses a stochastic treatment of runoff and discharge, and includes an erosion threshold in the water erosion law. It combines models :py:class:`BasicHy` and :py:class:`BasicSt`. The model evolves a topographic surface, :math:`\eta (x,y,t)`, with the following governing equation: .. math:: \frac{\partial \eta}{\partial t} = \frac{V Q_s}{\hat{Q}} - K\hat{Q}^{m}S^{n} + D\nabla^2 \eta Q_s = \int_0^A \left(K(1-F_f)\hat{Q(A)}^{m}S^{n} - \frac{V Q_s}{\hat{Q}(A)}\right) dA where :math:`\hat{Q}` is the local stream discharge (the hat symbol indicates that it is a random-in-time variable), :math:`S` is the local slope, :math:`A` is the local upstream drainage area, :math:`m` and :math:`n` are the discharge and slope exponent parameters, :math:`K` is the erodibility by water, :math:`V` is effective sediment settling velocity, :math:`Q_s` is volumetric sediment flux, :math:`r` is a runoff rate, and :math:`D` is the regolith transport efficiency. Refer to `Barnhart et al. (2019) <https://doi.org/10.5194/gmd-12-1267-2019>`_ Table 5 for full list of parameter symbols, names, and dimensions. The following at-node fields must be specified in the grid: - ``topographic__elevation`` """ _required_fields = ["topographic__elevation"]
[docs] def __init__( self, clock, grid, m_sp=0.5, n_sp=1.0, water_erodibility=0.0001, regolith_transport_parameter=0.1, settling_velocity=0.001, infiltration_capacity=1.0, fraction_fines=0.5, solver="basic", **kwargs ): """ Parameters ---------- clock : terrainbento Clock instance grid : landlab model grid instance The grid must have all required fields. m_sp : float, optional Drainage area exponent (:math:`m`). Default is 0.5. n_sp : float, optional Slope exponent (:math:`n`). Default is 1.0. water_erodibility : float, optional Water erodibility (:math:`K_s`). Default is 0.0001. nfiltration_capacity: float, optional Infiltration capacity (:math:`I_m`). Default is 1.0. regolith_transport_parameter : float, optional Regolith transport efficiency (:math:`D`). Default is 0.1. settling_velocity : float, optional Settling velocity of entrained sediment (:math:`V`). Default is 0.001. fraction_fines : float, optional Fraction of fine sediment that is permanently detached (:math:`F_f`). Default is 0.5. solver : str, optional Solver option to pass to the Landlab `ErosionDeposition <https://landlab.readthedocs.io/en/master/reference/components/erosion_deposition.html>`__ component. Default is "basic". **kwargs : Keyword arguments to pass to :py:class:`StochasticErosionModel`. These arguments control the discharge :math:`\hat{Q}`. Returns ------- BasicHySt : model object Examples -------- This is a minimal example to demonstrate how to construct an instance of model **BasicHySt**. For more detailed examples, including steady-state test examples, see the terrainbento tutorials. To begin, import the model class. >>> from landlab import RasterModelGrid >>> from landlab.values import random >>> from terrainbento import Clock, BasicHySt >>> clock = Clock(start=0, stop=100, step=1) >>> grid = RasterModelGrid((5,5)) >>> _ = random(grid, "topographic__elevation") Construct the model. >>> model = BasicHySt(clock, grid) Running the model with ``model.run()`` would create output, so here we will just run it one step. >>> model.run_one_step(1.) >>> model.model_time 1.0 """ # If needed, issue warning on porosity if "sediment_porosity" in kwargs: msg = "sediment_porosity is no longer used by BasicHySt." raise ValueError(msg) # Call ErosionModel"s init super().__init__(clock, grid, **kwargs) # verify correct fields are present. self._verify_fields(self._required_fields) # Get Parameters: self.m = m_sp self.n = n_sp self.K = water_erodibility self.infilt = infiltration_capacity # instantiate rain generator self.instantiate_rain_generator() # Run flow routing and lake filler self.flow_accumulator.run_one_step() # Instantiate an ErosionDeposition component self.eroder = ErosionDeposition( self.grid, K=self.K, F_f=fraction_fines, v_s=settling_velocity, m_sp=self.m, n_sp=self.n, discharge_field="surface_water__discharge", solver=solver, ) # Instantiate a LinearDiffuser component self.diffuser = LinearDiffuser( self.grid, linear_diffusivity=regolith_transport_parameter )
[docs] def run_one_step(self, step): """Advance model **BasicHySt** for one time-step of duration step. The **run_one_step** method does the following: 1. Creates rain and runoff, then directs and accumulates flow. 2. Assesses the location, if any, of flooded nodes where erosion should not occur. 3. Assesses if a :py:mod:`PrecipChanger` is an active boundary handler and if so, uses it to modify the erodibility by water. 4. Calculates erosion and deposition by water. 5. Calculates topographic change by linear diffusion. 6. Finalizes the step using the :py:mod:`ErosionModel` base class function **finalize__run_one_step**. This function updates all boundary handlers handlers by ``step`` and increments model time by ``step``. Parameters ---------- step : float Increment of time for which the model is run. """ # create and move water self.create_and_move_water(step) # Handle water erosion self.handle_water_erosion(step) # Do some soil creep self.diffuser.run_one_step(step) # Finalize the run_one_step_method self.finalize__run_one_step(step)
[docs]def main(): # pragma: no cover """Executes model.""" import sys try: infile = sys.argv[1] except IndexError: print("Must include input file name on command line") sys.exit(1) em = BasicHySt.from_file(infile) em.run()
if __name__ == "__main__": main()