Source code for terrainbento.derived_models.model_basicRtSa

# coding: utf8
# !/usr/env/python
"""terrainbento **BasicRt** model program.

Erosion model program using depth-dependent linear diffusion, soil production
by exponential weathering, stream power with spatially varying erodibility based
on two bedrock units, and discharge proportional to drainage area.

Landlab components used:
    1. `FlowAccumulator <https://landlab.readthedocs.io/en/master/reference/components/flow_accum.html>`_
    2. `DepressionFinderAndRouter <https://landlab.readthedocs.io/en/master/reference/components/flow_routing.html>`_ (optional)
    3. `FastscapeEroder <https://landlab.readthedocs.io/en/master/reference/components/stream_power.html>`_
    4. `DepthDependentDiffuser <https://landlab.readthedocs.io/en/master/reference/components/depth_dependent_diffusion.html>`_
    5. `ExponentialWeatherer <https://landlab.readthedocs.io/en/master/reference/components/weathering.html>`_
"""

import numpy as np

from landlab.components import (
    DepthDependentDiffuser,
    ExponentialWeatherer,
    FastscapeEroder,
)
from terrainbento.base_class import TwoLithologyErosionModel


[docs]class BasicRtSa(TwoLithologyErosionModel): r"""**BasicRtSa** model program. This model program combines the :py:class:`BasicRt` and :py:class:`BasicSa` programs by allowing for two lithologies, an "upper" layer and a "lower" layer and explicitly resolving a soil layer. This soil layer is produced by weathering that decays exponentially with soil thickness and hillslope transport is soil-depth dependent. Given a spatially varying contact zone elevation, :math:`\eta_C(x,y))`, a spatially varying soil thickness :math:`H` and a spatially varying bedrock elevation :math:`\eta_b`, model **BasicRtSa** evolves a topographic surface described by :math:`\eta` with the following governing equations: .. math:: \eta = \eta_b + H \frac{\partial H}{\partial t} = P_0 \exp (-H/H_s) - \delta (H) K Q^{m} S^{n} - \nabla q_h \frac{\partial \eta_b}{\partial t} = -P_0 \exp (-H/H_s) - (1 - \delta (H) ) K Q^{m} S^{n} q_h = -D H^* \left[1-\exp \left( -\frac{H}{H_0} \right) \right] \nabla \eta K(\eta, \eta_C ) = w K_1 + (1 - w) K_2 w = \frac{1}{1+\exp \left( -\frac{(\eta -\eta_C )}{W_c}\right)} where :math:`Q` is the local stream discharge, :math:`S` is the local slope, :math:`m` and :math:`n` are the discharge and slope exponent parameters, :math:`W_c` is the contact-zone width, :math:`K_1` and :math:`K_2` are the erodabilities of the upper and lower lithologies, and :math:`D` is the regolith transport parameter. :math:`w` is a weight used to calculate the effective erodibility :math:`K(\eta, \eta_C)` based on the depth to the contact zone and the width of the contact zone. :math:`H_s` is the sediment production decay depth, :math:`H_0` is the sediment transport decay depth, :math:`P_0` is the maximum sediment production rate, and :math:`H_0` is the sediment transport decay depth. :math:`q_h` is the hillslope sediment flux per unit width. The function :math:`\delta (H)` is used to indicate that water erosion will act on soil where it exists, and on the underlying lithology where soil is absent. To achieve this, :math:`\delta (H)` is defined to equal 1 when :math:`H > 0` (meaning soil is present), and 0 if :math:`H = 0` (meaning the underlying parent material is exposed). The weight :math:`w` promotes smoothness in the solution of erodibility at a given point. When the surface elevation is at the contact elevation, the erodibility is the average of :math:`K_1` and :math:`K_2`; above and below the contact, the erodibility approaches the value of :math:`K_1` and :math:`K_2` at a rate related to the contact zone width. Thus, to make a very sharp transition, use a small value for the contact zone width. Refer to `Barnhart et al. (2019) <https://doi.org/10.5194/gmd-12-1267-2019>`_ Table 5 for full list of parameter symbols, names, and dimensions. The following at-node fields must be specified in the grid: - ``topographic__elevation`` - ``lithology_contact__elevation`` - ``soil__depth`` """ _required_fields = [ "topographic__elevation", "lithology_contact__elevation", "soil__depth", ]
[docs] def __init__( self, clock, grid, soil_production__maximum_rate=0.001, soil_production__decay_depth=0.5, soil_transport_decay_depth=0.5, **kwargs ): """ Parameters ---------- clock : terrainbento Clock instance grid : landlab model grid instance The grid must have all required fields. m_sp : float, optional Drainage area exponent (:math:`m`). Default is 0.5. n_sp : float, optional Slope exponent (:math:`n`). Default is 1.0. water_erodibility_upper : float, optional Water erodibility of the upper layer (:math:`K_{1}`). Default is 0.001. water_erodibility_lower : float, optional Water erodibility of the upper layer (:math:`K_{2}`). Default is 0.0001. contact_zone__width : float, optional Thickness of the contact zone (:math:`W_c`). Default is 1. regolith_transport_parameter : float, optional Regolith transport efficiency (:math:`D`). Default is 0.1. soil_production__maximum_rate : float, optional Maximum rate of soil production (:math:`P_{0}`). Default is 0.001. soil_production__decay_depth : float, optional Decay depth for soil production (:math:`H_{s}`). Default is 0.5. soil_transport_decay_depth : float, optional Decay depth for soil transport (:math:`H_{0}`). Default is 0.5. **kwargs : Keyword arguments to pass to :py:class:`TwoLithologyErosionModel`. Importantly these arguments specify the precipitator and the runoff generator that control the generation of surface water discharge (:math:`Q`). Returns ------- BasicRtSa : model object Examples -------- This is a minimal example to demonstrate how to construct an instance of model **BasicRtSa**. For more detailed examples, including steady-state test examples, see the terrainbento tutorials. To begin, import the model class. >>> from landlab import RasterModelGrid >>> from landlab.values import random, constant >>> from terrainbento import Clock, BasicRtSa >>> clock = Clock(start=0, stop=100, step=1) >>> grid = RasterModelGrid((5,5)) >>> _ = random(grid, "topographic__elevation") >>> _ = random(grid, "soil__depth") >>> _ = constant(grid, "lithology_contact__elevation", value=-10.) Construct the model. >>> model = BasicRtSa(clock, grid) Running the model with ``model.run()`` would create output, so here we will just run it one step. >>> model.run_one_step(1.) >>> model.model_time 1.0 """ # Call ErosionModel"s init super().__init__(clock, grid, **kwargs) # verify correct fields are present. self._verify_fields(self._required_fields) # Set up rock-till boundary and associated grid fields. self._setup_rock_and_till() # Instantiate a FastscapeEroder component self.eroder = FastscapeEroder( self.grid, K_sp=self.erody, m_sp=self.m, n_sp=self.n, discharge_field="surface_water__discharge", erode_flooded_nodes=self._erode_flooded_nodes, ) soil_thickness = self.grid.at_node["soil__depth"] bedrock_elev = self.grid.add_zeros("node", "bedrock__elevation") bedrock_elev[:] = self.z - soil_thickness # Instantiate diffusion and weathering components self.weatherer = ExponentialWeatherer( self.grid, soil_production__maximum_rate=soil_production__maximum_rate, soil_production__decay_depth=soil_production__decay_depth, ) self.diffuser = DepthDependentDiffuser( self.grid, linear_diffusivity=self.regolith_transport_parameter, soil_transport_decay_depth=soil_transport_decay_depth, )
[docs] def run_one_step(self, step): """Advance model **BasicRtSa** for one time-step of duration step. The **run_one_step** method does the following: 1. Creates rain and runoff, then directs and accumulates flow. 2. Assesses the location, if any, of flooded nodes where erosion should not occur. 3. Assesses if a :py:mod:`PrecipChanger` is an active boundary handler and if so, uses it to modify the erodibility by water. 4. Updates the spatially variable erodibility value based on the relative distance between the topographic surface and the lithology contact. 5. Calculates detachment-limited erosion by water. 6. Calculates topographic change by linear diffusion. 7. Finalizes the step using the :py:mod:`ErosionModel` base class function **finalize__run_one_step**. This function updates all boundary handlers handlers by ``step`` and increments model time by ``step``. Parameters ---------- step : float Increment of time for which the model is run. """ # create and move water self.create_and_move_water(step) # Update the erodibility field self._update_erodibility_field() # Do some erosion self.eroder.run_one_step(step) # We must also now erode the bedrock where relevant. If water erosion # into bedrock has occurred, the bedrock elevation will be higher than # the actual elevation, so we simply re-set bedrock elevation to the # lower of itself or the current elevation. b = self.grid.at_node["bedrock__elevation"] b[:] = np.minimum(b, self.grid.at_node["topographic__elevation"]) # Calculate regolith-production rate self.weatherer.calc_soil_prod_rate() # Generate and move soil around self.diffuser.run_one_step(step) # Finalize the run_one_step_method self.finalize__run_one_step(step)
[docs]def main(): # pragma: no cover """Executes model.""" import sys try: infile = sys.argv[1] except IndexError: print("Must include input file name on command line") sys.exit(1) sart = BasicRtSa.from_file(infile) sart.run()
if __name__ == "__main__": main()