Source code for terrainbento.derived_models.model_basicStTh

# coding: utf8
# !/usr/env/python
"""terrainbento **BasicStTh** model program.

Erosion model program using linear diffusion, smoothly thresholded stream
power, and stochastic discharge with a smoothed infiltration capacity
threshold.

Landlab components used:
    1. `FlowAccumulator <https://landlab.readthedocs.io/en/master/reference/components/flow_accum.html>`_
    2. `DepressionFinderAndRouter <https://landlab.readthedocs.io/en/master/reference/components/flow_routing.html>`_ (optional)
    3. `StreamPowerSmoothThresholdEroder`
    4. `LinearDiffuser <https://landlab.readthedocs.io/en/master/reference/components/diffusion.html>`_
    5. `PrecipitationDistribution <https://landlab.readthedocs.io/en/master/reference/components/uniform_precip.html>`_
"""

from landlab.components import LinearDiffuser, StreamPowerSmoothThresholdEroder
from terrainbento.base_class import StochasticErosionModel


[docs]class BasicStTh(StochasticErosionModel): r"""**BasicStTh** model program. This model program uses a stochastic treatment of runoff and discharge, and includes an erosion threshold in the water erosion law. It combines models :py:class:`BasicSt` and :py:class:`BasicTh`. The model evolves a topographic surface, :math:`\eta (x,y,t)`, with the following governing equation: .. math:: \frac{\partial \eta}{\partial t} = -(K_{q}\hat{Q}^{m}S^{n} - \omega_c) + D\nabla^2 \eta where :math:`\hat{Q}` is the local stream discharge (the hat symbol indicates that it is a random-in-time variable) and :math:`S` is the local slope gradient. :math:`m` and :math:`n` are the discharge and slope exponent, respectively, :math:`\omega_c` is the critical stream power required for erosion to occur, :math:`K` is the erodibility by water, and :math:`D` is the regolith transport parameter. Refer to `Barnhart et al. (2019) <https://doi.org/10.5194/gmd-12-1267-2019>`_ Table 5 for full list of parameter symbols, names, and dimensions. The following at-node fields must be specified in the grid: - ``topographic__elevation`` """ _required_fields = ["topographic__elevation"]
[docs] def __init__( self, clock, grid, m_sp=0.5, n_sp=1.0, water_erodibility=0.0001, regolith_transport_parameter=0.1, water_erosion_rule__threshold=0.01, infiltration_capacity=1.0, **kwargs ): """ Parameters ---------- clock : terrainbento Clock instance grid : landlab model grid instance The grid must have all required fields. m_sp : float, optional Drainage area exponent (:math:`m`). Default is 0.5. n_sp : float, optional Slope exponent (:math:`n`). Default is 1.0. water_erodibility : float, optional Water erodibility (:math:`K`). Default is 0.0001. water_erosion_rule__threshold : float, optional Erosion rule threshold when no erosion has occured (:math:`\omega_c`). Default is 0.01. regolith_transport_parameter : float, optional Regolith transport efficiency (:math:`D`). Default is 0.1. infiltration_capacity: float, optional Infiltration capacity (:math:`I_m`). Default is 1.0. **kwargs : Keyword arguments to pass to :py:class:`StochasticErosionModel`. These arguments control the discharge :math:`\hat{Q}`. Returns ------- BasicStTh : model object Examples -------- This is a minimal example to demonstrate how to construct an instance of model **BasicStTh**. For more detailed examples, including steady-state test examples, see the terrainbento tutorials. To begin, import the model class. >>> from landlab import RasterModelGrid >>> from landlab.values import random >>> from terrainbento import Clock, BasicStTh >>> clock = Clock(start=0, stop=100, step=1) >>> grid = RasterModelGrid((5,5)) >>> _ = random(grid, "topographic__elevation") Construct the model. >>> model = BasicStTh(clock, grid) Running the model with ``model.run()`` would create output, so here we will just run it one step. >>> model.run_one_step(1.) >>> model.model_time 1.0 """ # Call ErosionModel"s init super().__init__(clock, grid, **kwargs) # verify correct fields are present. self._verify_fields(self._required_fields) # Get Parameters: self.m = m_sp self.n = n_sp self.K = water_erodibility self.infilt = infiltration_capacity if float(self.n) != 1.0: raise ValueError("Model only supports n equals 1.") # instantiate rain generator self.instantiate_rain_generator() # Run flow routing and lake filler self.flow_accumulator.run_one_step() # Instantiate a FastscapeEroder component self.eroder = StreamPowerSmoothThresholdEroder( self.grid, K_sp=self.K, m_sp=self.m, n_sp=self.n, threshold_sp=water_erosion_rule__threshold, discharge_field="surface_water__discharge", erode_flooded_nodes=self._erode_flooded_nodes, ) # Instantiate a LinearDiffuser component self.diffuser = LinearDiffuser( self.grid, linear_diffusivity=regolith_transport_parameter )
[docs] def run_one_step(self, step): """Advance model **BasicStTh** for one time-step of duration step. The **run_one_step** method does the following: 1. Creates rain and runoff, then directs and accumulates flow. 2. Assesses the location, if any, of flooded nodes where erosion should not occur. 3. Assesses if a :py:mod:`PrecipChanger` is an active boundary handler and if so, uses it to modify the erodibility by water. 4. Calculates detachment-limited, threshold-modified erosion by water. 5. Calculates topographic change by linear diffusion. 6. Finalizes the step using the :py:mod:`ErosionModel` base class function **finalize__run_one_step**. This function updates all boundary handlers handlers by ``step`` and increments model time by ``step``. Parameters ---------- step : float Increment of time for which the model is run. """ # create and move water self.create_and_move_water(step) # Handle water erosion self.handle_water_erosion(step) # Do some soil creep self.diffuser.run_one_step(step) # Finalize the run_one_step_method self.finalize__run_one_step(step)
[docs]def main(): # pragma: no cover """Executes model.""" import sys try: infile = sys.argv[1] except IndexError: print("Must include input file name on command line") sys.exit(1) em = BasicStTh.from_file(infile) em.run()
if __name__ == "__main__": main()