class BasicCh

Model BasicCh

terrainbento BasicCh model program.

Erosion model program using cubic diffusion, basic stream power, and discharge proportional to drainage area.

Landlab components used:
  1. FlowAccumulator

  2. DepressionFinderAndRouter (optional)

  3. FastscapeEroder

  4. TaylorNonLinearDiffuser

class BasicCh(clock, grid, m_sp=0.5, n_sp=1.0, water_erodibility=0.0001, regolith_transport_parameter=0.1, critical_slope=0.3, number_of_taylor_terms=11, **kwargs)[source]

Bases: terrainbento.base_class.erosion_model.ErosionModel

BasicCh model program.

This model program evolves a topographic surface, \(\eta\), with the following governing equation:

\[ \begin{align}\begin{aligned}\frac{\partial \eta}{\partial t} = -KQ^{m}S^{n} + \nabla^2 q_h\\q_h = -DS \left[ 1 + \left( \frac{S}{S_c} \right)^2 + \left( \frac{S}{S_c} \right)^4 + ... \left( \frac{S}{S_c} \right)^{2(N-1)} \right]\end{aligned}\end{align} \]

where \(Q\) is the local stream discharge, \(S\) is the local slope, \(m\) and \(n\) are the discharge and slope exponent parameters, \(K\) is the erodibility by water, \(D\) is the regolith transport efficiency, and \(S_c\) is the critical slope. \(q_h\) represents the hillslope sediment flux per unit width. \(N\) is the number of terms in the Taylor Series expansion.

Refer to Barnhart et al. (2019) Table 5 for full list of parameter symbols, names, and dimensions.

The following at-node fields must be specified in the grid:
  • topographic__elevation

__init__(clock, grid, m_sp=0.5, n_sp=1.0, water_erodibility=0.0001, regolith_transport_parameter=0.1, critical_slope=0.3, number_of_taylor_terms=11, **kwargs)[source]
Parameters
  • clock (terrainbento Clock instance) –

  • grid (landlab model grid instance) – The grid must have all required fields.

  • m_sp (float, optional) – Drainage area exponent (\(m\)). Default is 0.5.

  • n_sp (float, optional) – Slope exponent (\(n\)). Default is 1.0.

  • water_erodibility (float, optional) – Water erodibility (\(K\)). Default is 0.0001.

  • regolith_transport_parameter (float, optional) – Regolith transport efficiency (\(D\)). Default is 0.1.

  • critical_slope (float, optional) – Critical slope (\(S_c\), unitless). Default is 0.3.

  • number_of_taylor_terms (int, optional) – Number of terms in the Taylor Series Expansion (\(N\)). Default is 11.

  • **kwargs – Keyword arguments to pass to ErosionModel. Importantly these arguments specify the precipitator and the runoff generator that control the generation of surface water discharge (\(Q\)).

Returns

BasicCh

Return type

model object

Examples

This is a minimal example to demonstrate how to construct an instance of model BasicCh. For more detailed examples, including steady-state test examples, see the terrainbento tutorials.

To begin, import the model class.

>>> from landlab import RasterModelGrid
>>> from landlab.values import random
>>> from terrainbento import Clock, BasicCh
>>> clock = Clock(start=0, stop=100, step=1)
>>> grid = RasterModelGrid((5,5))
>>> _ = random(grid, "topographic__elevation")

Construct the model.

>>> model = BasicCh(clock, grid)

Running the model with model.run() would create output, so here we will just run it one step.

>>> model.run_one_step(1.)
>>> model.model_time
1.0
run_one_step(step)[source]

Advance model BasicCh for one time-step of duration step.

The run_one_step method does the following:

  1. Creates rain and runoff, then directs and accumulates flow.

  2. Assesses the location, if any, of flooded nodes where erosion should not occur.

  3. Assesses if a PrecipChanger is an active boundary handler and if so, uses it to modify the erodibility by water.

  4. Calculates detachment-limited erosion by water.

  5. Calculates topographic change by nonlinear diffusion.

  6. Finalizes the step using the ErosionModel base class function finalize__run_one_step. This function updates all boundary handlers handlers by step and increments model time by step.

Parameters

step (float) – Increment of time for which the model is run.

main()[source]

Executes model.